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= Partitioning construction for a specific spatial level:
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= Base Idea for deep geolocation estimation: ° P = a skyline, or mountain range
= Divide earth in cells (=partitioning) . Learning: = |dentified concepts which give visual cues
= Train a CNN on a classification task (hierarchical) » {0 a concrete location

= CNN with multi-head (one head per partitioning)

" Key for success: Construction of the partitioning = Jointly learns to localize at multiple spatial scales ~ €.g. tower, building, sky
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Given a segmentation and explanation map for an input image, = We compare SemP on a fixed setup with the s2 partitioning
BT s = Fair comparison (same data, backbone, training, inference)
= No need to use ensembles or additional retrieval methods
| f = Directly evaluate a multi-partitioning variant: (s2(M,f*) [3]) = leads to state-of-the art results
PN , - = Quantitative evaluation on three test sets (Im2GPS3k in Tab. 1)
m(s, x) e(C, x) w.r.t. model's prediction = SemP intuitively provides better comprehensible output (Fig. 2)

Fig. 1: Partitioning of the earth’s survace in cells based on the dataset
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_ _ top-k intersection of two binary masks CO nta Ct Tab. 1: Results on the Im2GPS3k dataset. Percentage of images
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1. Semantic Partitioning (SemP) a(m(s, x), e (C, x)) = —
= We incorperate data from Open Street Map (OSM) N o7 Zizo Zj=0 M(5,X)j PlaNet [1] (repr. [2]) 85%  248% 343%  48.4% 64.6 %
= Making model’s output & learning procedure more natural mask for one concept \ﬁfNJ » f CPlaNet [2] 102%  265% 346%  48.6% 64.6 %
= State-of-the art performance on benchmark datasets relative concept size erTerences s2(M,f*) (repr.) 5%  308% 410%  557% 70.8 %
[1] Weyand, T., Kostrikov, I., & Philbin, J. Planet-photo geolocation with SemP({100, 125, 250}.f) 125 % 214 % 427 % 57.3 % 72.0 %
" : s . . convolutional neural networks. ECCV"6 (pp. 37-55). Springer, Amsterdam ' ' ' ' . . . .
2. Investigate the post-hoc interpretability (concept influence metric) [2] Seo, P. H., Weyand, T., Sim, J., & Han, B. Cplanet: Enhancing image SemP({50, 75, 100}.) 1356%  308% 412%  547% 70.2 %

= We measure the influence Of Semantic ViSU8| Concepts ggcr)ilr?gslr{zlaﬂa?cgy combinatorial partitioning of maps. ECCV"18 (pp. 536-551).

m \We provide insights which features contribute to correct and incorrect [3] MUller-Budack, E., Pustu-lren, K., & Ewerth, R. Geolocation estimation of Source code and datasets available at:

photos using a hierarchical model and scene classification. ECCV"8 (pp. 563-

(and misleading) predictions Morphological dilation f [px] to cover boundaries: m” (s = "camel", x) 579). Springer, Munich https://github.com/jtheiner/semantic__geo_ partitioning
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