

Interpretable Semantic Photo Geolocation

Jonas Theiner¹, Eric Müller-Budack², and Ralph Ewerth^{1,2} ¹L3S Research Center, Leibniz University Hannover, Hannover, Germany ²TIB – Leibniz Information Centre for Science and Technology, Hannover, Germany

Problem Formulation

- Task: Predicting the location of a photo at planet-scale without any restrictions
- Humans are far worse than all DNN-based solutions
- DNNs lack of explainability and interpretability

 \rightarrow How to improve the explainability and interpretability for the gelocation estimation task?

Related Work

- Base Idea for deep geolocation estimation:
 - Divide earth in cells (=*partitioning*)
 - Train a CNN on a classification task (hierarchical)
 - Key for success: Construction of the partitioning
- \rightarrow Classes are based on the training distribution
- \rightarrow State-of-the-art: Boundaries are arbitrary shaped (Fig. 1 left two)

CPIaNet [Seo et al., ECCV'18]

Ours (SemP)

Fig. 1: Partitioning of the earth's survace in cells based on the dataset distribution. Right: Our semantic partitioning (SemP)

Contributions

- 1. Semantic Partitioning (SemP)
 - We incorperate data from Open Street Map (OSM)
 - Making model's output & learning procedure more natural
 - State-of-the art performance on benchmark datasets
- 2. Investigate the post-hoc interpretability (concept influence metric)
 - We measure the influence of semantic visual concepts
 - We provide insights which features contribute to correct and incorrect (and misleading) predictions

Morphological dilation β [px] to cover boundaries: $m^{\beta}(s = "camel", x)$

Experimental Results Concept Influence

Procedure:

- Aggregate concept influence (per concept) \rightarrow for a set of images
- Group by geolocation error
- Order by magnitude

Findings:

- Border between concepts is of interest \rightarrow a skyline, or mountain range
- Identified concepts which give visual cues to a concrete location
- \rightarrow e.g., tower, building, sky
- or to rough region
- \rightarrow e.g., windowpane, tree, flower

Fig. 2: Qualitative results for **SemP** (top) vs. *s2(M,f*)* (bottom): Visualized top-25 cells; • predicted location; • ground truth

Semantic Partitioning

- We compare **SemP** on a fixed setup with the *s2* partitioning
- Fair comparison (same data, backbone, training, inference)
- No need to use ensembles or additional retrieval methods
- Directly evaluate a multi-partitioning variant: $(s2(M, f^*)[3]) \rightarrow$ leads to state-of-the art results
- Quantitative evaluation on three test sets (Im2GPS3k in Tab. 1)
- SemP intuitively provides better comprehensible output (Fig. 2)

Contact

theiner@I3s.de {eric.mueller, ralph.ewerth}@tib.eu

References

[1] Weyand, T., Kostrikov, I., & Philbin, J. Planet-photo geolocation with convolutional neural networks. ECCV'16 (pp. 37-55). Springer, Amsterdam [2] Seo, P. H., Weyand, T., Sim, J., & Han, B. Cplanet: Enhancing image geolocalization by combinatorial partitioning of maps. ECCV'18 (pp. 536-551). Springer, Munich

[3] Müller-Budack, E., Pustu-Iren, K., & Ewerth, R. Geolocation estimation of photos using a hierarchical model and scene classification. ECCV'18 (pp. 563-579). Springer, Munich

Tab. 1: Results on the *Im2GPS3k* dataset. Percentage of images localized within given radius. Only the partitioning differs.

PlaN CPla s2(M

Meth

Sem Sem

MACV WAIKOLOA, HI JAN 4-8

nod	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km
et [1] (repr. [2])	8.5 %	24.8 %	34.3 %	48.4 %	64.6 %
Net [2]	10.2 %	26.5 %	34.6 %	48.6 %	64.6 %
,f*) (repr.)	11.5 %	30.8 %	41.0 %	55.7 %	70.8 %
P({100, 125, 250},f)	12.5 %	31.4 %	42.7 %	57.3 %	72.0 %
P({50, 75, 100},f)	13.5 %	30.8 %	41.2 %	54.7 %	70.2 %

Source code and datasets available at:

https://github.com/jtheiner/semantic_geo_partitioning