

Interpretable Semantic Photo Geolocation

Jonas Theiner, Eric Müller-Budack, and Ralph Ewerth

5 min summary

🕑 @thejtheiner

https://github.com/jtheiner/semantic_geo_partitioning

Problem Formulation

eorgenungszenderung in seerer

Task:

- Predicting the location of a photo
- At plane-scale without any restrictions (landmarks, indoor, etc.)

Problem:

- Humans are far worse than Deep Learning solutions
- Deep Neural Networks (DNNs) lack explainability & interpretability

How to improve the **interpretability** & **explainability** for the geolocation estimation task?

Related Work

Base Idea

- Divide earth into cells (=partitioning)
- Train a DNN on a classification task

Key for success

ightarrow Construction of the *partitioning*

- s2 partitioning at multiple spatial scales
 - Leads to state-of-the-art results [Müller-Budack et al., ECCV'18]
 - Jointly learn to localize at multiple spatial scales

quad-tree hierarchy

s2 [Weyand et al., ECCV'16]

Initialized randomly; formed by data distribution

CPIaNet [Seo et al., ECCV'18]

Contributions

- 1. Semantic Partitioning
 - We incorperate data derived from Open Street Map
 - Territorial boundaries (e.g, streets, cities, countries)
 - Natural boundaries (e.g., rivers, mountains)
 - Man-made boundaries (e.g., buildings, rails)
 - More natural model's output & learning task
- 2. Investigate the post-hoc interpretability
 - We measure the influence of semantic visual concepts
 - Provide insights which features contribute to correct and incorrect predictions

Concept Influence

Building: 2.86 Mountain: 0.62 Hill: 0.22 Grass: 0.01

Lauterbrunnen, Oberland, Bern GCD: 81.7 km

Semantic Partitioning

Construction

- Given: Dataset with GPS coordinates (+ images)
- Reverse Geocoding
 - ightarrow One adress vector for each coordinate
- Construct a hierarchy of locations

 \rightarrow Each location can be assigned to one parent

Partitioning: Subset from hierarchy based on the image distribution

Semantic Partitioning

Evaluation

 Comparison with s(M, f*) [Müller-Budack et al., ECCV'18] \rightarrow Yields state-of-the-art results \rightarrow Fixed setup (same data, backbone, training, etc.)

Similar or better results than state-of-the-art-approaches

Method	Street 1 km	City 25 km	Region 200 km	Country 750 km	Continent 2500 km
s2(M,f*) (repr.)	11.5 %	30.8 %	41.0 %	55.7 %	70.8 %
SemP({100, 125, 250},f)	12.5 %	31.4 %	42.7 %	57.3 %	72.0 %
SemP({50, 75, 100},f)	13.5 %	30.8 %	41.2 %	54.7 %	70.2 %

Results on the Im2GPS3k dataset. Percentage of images localized within given radius. Only the partitioning differs.

👂 la Sagrada Família,

Barcelona,

Catalonia, Spain

Castle District, Budapest, Central Hungary, Hungary

Riverside County, California, USA

Concept Influence

• Given: A segmentation and explanation map for an input image

• We measure the attribution of individual concepts on model's prediction

Model Analysis

- We identified concepts which give visual cues
 - to a concrete location (e.g., tower, building, sky)
 - to a rough region (e.g., window pane, tree, flower)
- Border between specific concepts is of interest (skyline, mountain range)

References

- Weyand, T., Kostrikov, I., & Philbin, J. Planet-photo geolocation with convolutional neural networks. ECCV'16 (pp. 37–55). Springer, Amsterdam
- Seo, P. H., Weyand, T., Sim, J., & Han, B. Cplanet: Enhancing image geolocalization by combinatorial partitioning of maps. ECCV'18 (pp. 536–551). Springer, Munich
- Müller-Budack, E., Pustu-Iren, K., & Ewerth, R. Geolocation estimation of photos using a hierarchical model and scene classification. ECCV'18 (pp. 563-579). Springer, Munich