
Experimental Results

Evaluation data
▪ TV broadcasts with synchronized official positional data

▪ German Bundesliga (different saisons)
▪ Standard TV view & tactical cam (smaller focal length & no cuts)

→ No overlap to training & validation data (league, stadium, team)

How to compare with ground-truth positional data?
▪ Mapping between visible and actual player positions 

▪ Solve linear-sum-assignment problem
▪ Tolerate minor errors 

▪ Player detection
▪ Team assignment
▪ Ground-truth player mapping
→ Per-frame aggregation: 80%-percentile 

▪ Cover larger errors from sports field registration
▪ Self-verification (sv) criteria
▪ Player mismatch (pm) criteria

Metric: Per-frame error in meters with aggregation per match (Tab. 1)
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Problem Definition
2D position of (soccer) players on the pitch are of high interest

▪ (Automatic) match analysis
▪ Physiological statistics generation
▪ Scouting

... but not always easy to obtain (e.g., calibrated multi-cameras, sensors)
▪ Financial limitations
▪ Licensing issues
▪ Competitive concerns

▪ Broadcast TV videos can be assessed more easily

▪ Real-world task: Player Position Estimation from pan-tilt-zoom cameras
→ Compound task is not tackled in research
→ Insufficient evaluation of sub-modules regarding real-world applicability
→ Unknown quality of commercial systems

Contributions
1. Transparent baseline with interchangable modules & data
2. Comprehensive experimental evaluation

▪ Evaluation of individual modules
▪ Identify the influence of errors to subsequent modules
▪ Comparison with ground-truth positional data (joint task)

Contact
▪ {theiner, gritz}@l3s.de
▪ {eric.mueller, ralph.ewerth}@tib.eu

Broadcast Video

Player Position Estimation Pipeline
▪ Shot Boundary Detection: TransNetV2 [1]
▪ Shot Type Classification: → Tracking of homography changes

▪ Homography Estimation: Chen and Little [2]
▪ Task: Estimate homography matrix
▪ Pix2Pix model [3] for segmentation (field mask & edge images)
▪ Initial guess:

▪ Nearest neighbor in dictionary with known camera parameters
▪ Deep feature retrieval
▪ Synthetic training data

▪ Refinement as relative image transformation (Lukas-Kanade algorithm [4])

▪ Player Detection: Fine-tuned CenterTrack [5]
▪ Team Assignment → DBScan with hand-crafted features
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Dataset sv pm Ratio 𝑑𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑐𝑐2𝑚 𝑑𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑐𝑐2𝑚

TC14 1.00 1.20 m 0.74 1.39 m 0.78

x 0.90 1.14 m 0.79 1.34 m 0.81

x x 0.79 1.13 m 0.79 1.29 m 0.81

TV14-S 1.00 1.36 m 0.69 2.44 m 0.43

x 0.92 1.29 m 0.73 2.34 m 0.44

x x 0.75 1.27 m 0.75 2.32 m 0.45

Tab. 1: Comparing ground-truth positions 
with estimated player positions: Results 
regarding median error (𝑑𝑚𝑒𝑑𝑖𝑎𝑛) in meter 
and fraction of frames with an error of less 
or equal than 2 meters (𝑎𝑐𝑐2𝑚). Ratio 
indicates how many frames are kept for 
evaluation after applying different criteria 
(system output: only with sv).

Fig. 2: Qualitative results: Top row: Green triangles correspond to the estimated positions of players; team assignments are colored read and blue.

Key Findings
▪ Major difficulty: generalizability of individual models

→ Sports field registration & team assignment
→ Fail when test data is sligthly out of training distribution
→ Need for more training data or more robust algorithms

▪ How to evaluate the overall task 
→ Influence of individual modules

Future Work
▪ Player tracking & re-identification
▪ Automatic team-performance analysis 

▪ With in-complete (visible players) data
▪ With errornous data
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Fig. Pipeline: Player Position Estimation
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