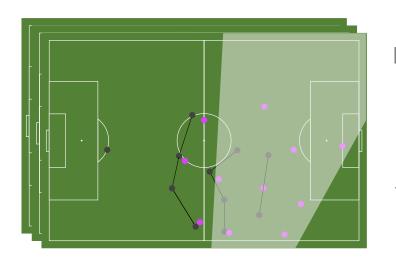


TVCalib: Camera Calibration for Sports Field Registration in Soccer

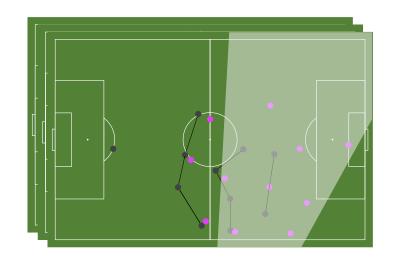
Jonas Theiner¹

Ralph Ewerth^{1,2}

¹ L3S Research Center, Leibniz University Hannover, Hannover, Germany ² TIB – Leibniz Information Centre for Science and Technology, Hannover, Germany



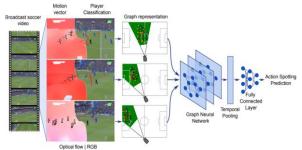
Sports Field Registration in Broadcast Videos


Sports Field Registration

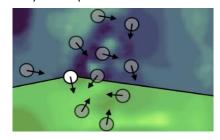
- Usually interpreted as homography estimation H
 - Plane-to-plane mapping
 - Broadcast image to bird's eye view and vice versa

Sports Field Registration in Broadcast Videos

Sports Field Registration



Augmented reality

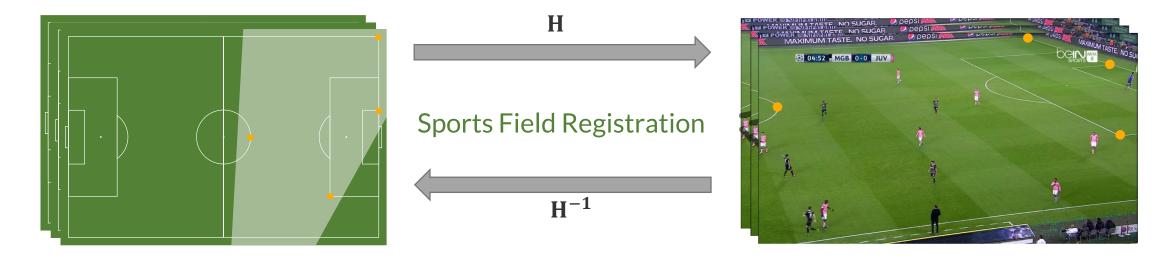

[Fischer et al. 2019]

Event detection

[Cartas et al. MMSports'22]

Generation & enrichment of player position data

[Sangüesa et al. CVPRW'20]


3D scene reconstruction

[Ramatas et al. CVPR'18]

Sports Field Registration in Broadcast Videos

- Vanilla approach: Direct Linear Transform (DLT) from point correspondences
 - Requires accurate (point) correspondences
 - Easy-to-detect keypoints can be out of view [Chu et al. CVPRW'22]

Related Work

Semantic segmentation

- Keypoint prediction [Chu et al. CVPRW'22] [Shi et al. WACV'22] [Nie et al. WACV'21]
- Line segmentation[Chen & Little CVPRW'19]
- Area masking [Chen & Little CVPRW'19] [Sha et al. CVPR'20]

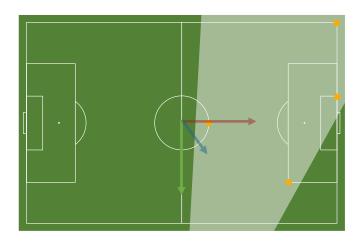
Focus

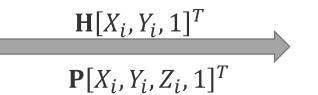
- Homography estimation
- Two-step estimation: $H = H_{init}H_{rel}$

Initial estimation

- DLT [Nie et al. WACV'21] [Citraro et al. Machine Vision and Applications'20]
- Regression of **H** [Chu et al. WACV'22] [Jiang et al. WACV'20]
- Nearest neighbor retrieval of known camera poses

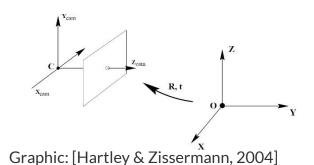
[Shi et al. WACV'22] [Sha et al. CVPR'2] [Nie et al. WACV'21]


Refinement as relative image transformation


- L1 reprojection [Shi et al. CVPRW'22]
- Lucas-Kanade algorithm [Chen & Little CVPRW'19]
- Spatial Transformer Networks

[Sha et al. CVPR'20] [Chen & Little CVPRW'19]

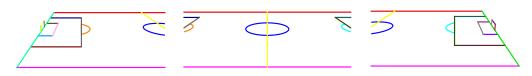
Why do we tackle camera calibration?



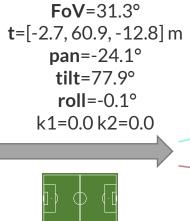
$$\mathbf{H}^{-1}\left[x_i, y_i, 1\right]^T$$

Pinhole camera model

$$\mathbf{P}^{3x4} = \mathrm{KR}[\mathrm{I}|-\mathrm{t}] = \begin{bmatrix} flx & shear & u_0 \\ 0 & fly & v_0 \\ 0 & 0 & 1 \end{bmatrix} R \begin{bmatrix} 1 & -X_c \\ 1 & -Y_c \\ 1 & 1 -Z_c \end{bmatrix}$$


$$R^{3x3} = R_z(roll)R_X(tilt) R_z(pan)$$

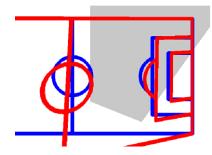
For planar settings (Z = 0): $\mathbf{H}^{3x3} = KR^{3x[1,2]}[I|-t] = \mathbf{P}^{3x[1,2,4]}$


TVCalib - Main Idea

- **Estimation of underlying camera parameters** (extrinsics, intrinsics, potential lens distortion)
- Sports field segments as calibration pattern (points on lines, points on circles)
- Iteratively minimize the segment reprojection loss
 - Point-line and point-circle distances
 - Gradient-based solver
 - Initialize from multiple views

Experiments

Benchmark Datasets


- SoccerNet-Calibration [Giancola et al. MMSports'22]*
- FIFA WorldCup2014 [Homayounfar et al. CVPR'17]

Metrics

- Unavailability of ground-truth camera parameters
- (Image) reprojection error for individual segments: ACC@t [px] = TP / (FP+FN+TP)
 [Giancola et al. MMSports'22]*

- Projection error (reconstruction): IoU_{part}
 - Binary IoU for the visible part of the projected field
 - Estimated and manually annotated homography matrix

[Citraro et al. Machine Vision and Applications'20]

^{*} https://github.com/SoccerNet/sn-calibration

Evaluating the Homography on WorldCup2014 Dataset

(image) reprojection accuracy projection accuracy

Calibration	Segmentation	ACC@5	ACC@10	ACC@20	IoU _{part} (mean)	IoU _{part} (median)
Н		54.1	82.9	92.4	100.0	100.0
TVCalib	GT	62.7	84.9	95.5	96.1	97.1
[Chen & Little CVPR'19]	GT	61.2	82.4	90.6	95.2	97.3
TVCalib	Pred	38.8	69.1	89.4	95.3	96.6
[Chen & Little CVPR'19]	Chen & Little	35.8	66.3	84.4	94.6	96.3
[Jiang et al. WACV'20]	Jiang et al.	36.9	62.9	81.5	95.2	97.1
[Shi et al. WACV'22]	Shi et al.				96.6	97.8
[Chu et al. CVPRW'22]	Chu et al.				96.0	97.0

- Quality of annotated matrices H introduces bias [Homayounfar et al. CVPR'17]
- Superior results compared to reimplemented approaches
- Projection error: Similar results compared to state-of-the-art approaches

Conclusion

Limitations

- Local minima due to gradient-based optimization
- Optimization of an image reprojection error only

Future Work

- Usage of temporal information
- End-to-end learning approach

project website & source code

