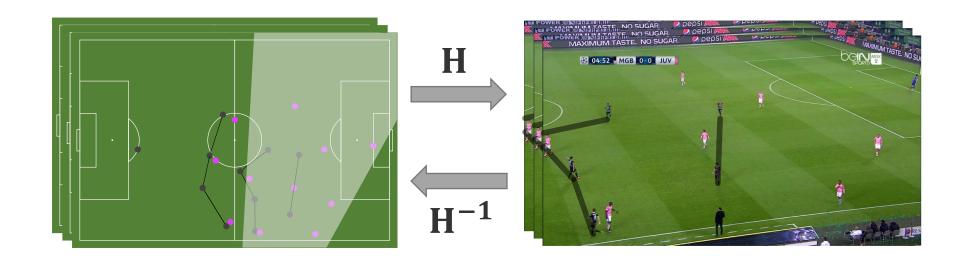
# TVCalib: Camera Calibration for Sports Field Registration in Soccer



Jonas Theiner<sup>1</sup> Ralph Ewerth<sup>1,2</sup>

<sup>1</sup>L3S Research Center, Leibniz University Hannover, Hannover, Germany


<sup>2</sup>TIB – Leibniz Information Centre for Science and Technology, Hannover, Germany

**Motivation - Sports Field Registration in Broadcast Videos** 

Why do we tackle the camera calibration?

Usually interpreted as the task of homography estimation

- Plane-to-plane mapping
- Broadcast image to bird's eye view and vice versa



**Related work** 

Semantic segmentation via CNNs Keypoint prediction, line segmentation, or area masking

#### Vanilla approach

Direct Linear Transform (DLT) from point correspondences

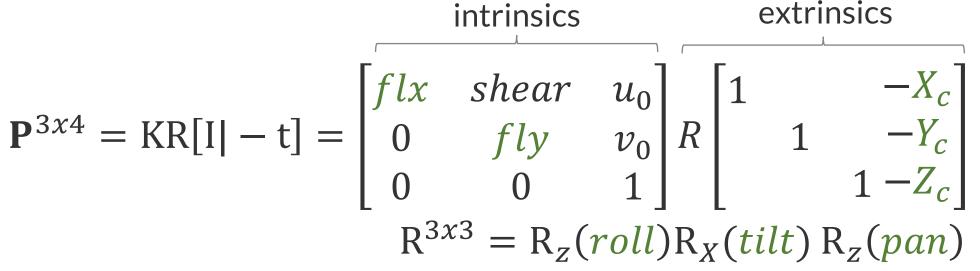
- Estimation of actual underlying camera parameters
- 3D sports field registration

## **Pinhole camera model**

The projection matrix **P** projects arbitrary 3D scene coordinates to the 2D image according to:

intrinsics

## Applications


- Augmented reality [Stein et al. TransVizComputGraph'18]
- 3D scene reconstruction [Zhu et al. ECCV'20, Rematas et al. CVPR'21]
- Temporal event detection [Cartas et al. MMSports'22]
- Generation and enrichment of player position data
  - [Theiner et al. WACV'22, Arbues-Sanguesa et al. CVPRW'20]

Drawbacks:

- Easy-to-detect keypoints can be out of view
- [Chu et al. CVPRW'22] Requires accurate (point) correspondences

**Two-step homography estimation:**  $H = H_{init}H_{rel}$ 

- Initial estimation DLT, regression Nearest neighbor retrieval of known camera poses
- Refinement as relative image transformation Minimization of the L1 reprojection error Spatial Transformer Networks



# **Relation to the homography**

For planar settings, the homography matrix **H** maps arbitrary 2D scene coordinates to the 2D image and vice versa. We can substitute **P** to **H**, if we set Z = 0:

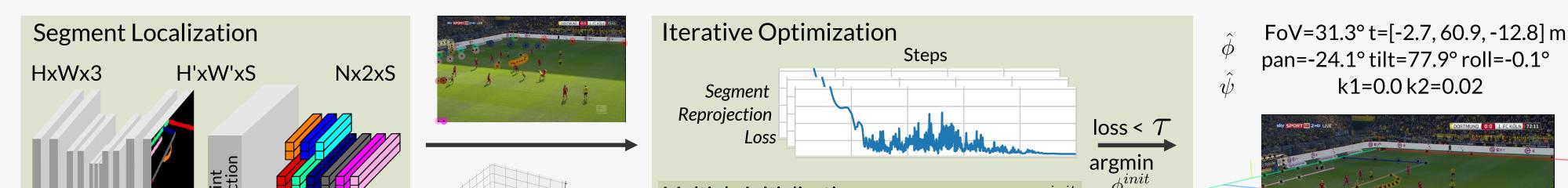
 $\mathbf{H}^{3x3} = \mathrm{KR}^{3x[1,2]}[\mathbf{I}] - \mathbf{t}$ 

# **Approach for Keypointless Calibration**

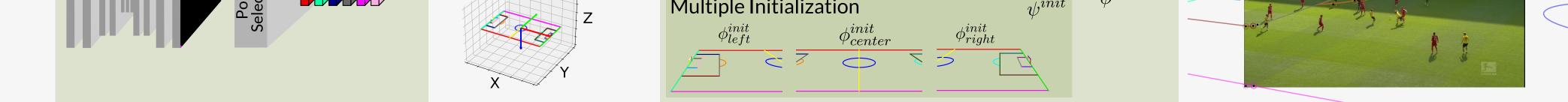
# **Estimation of individual camera parameters**

- Camera pose (location and orientation)
- Intrinsics (focal length)
- Radial lens distortion coefficients

#### Contributions


Differentiable segment reprojection loss function

# **Sports field segments as calibration pattern**


- Points on individual lines
- Points on individual circles

Iteratively minimize the segment reprojection loss

- Point-line and point circle-distances at image space
- Gradient-based solver



#### Novel pipeline for sports field registration



# Experiments

# Conclusions

#### **Evaluation**

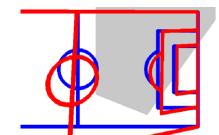

- Issue: Absence of ground truth camera parameters
- Image annotations are the only ground truth we know

Image reprojection error via ACC@t [Giancola et al. MMSports'22] from annotated points at several thresholds in pixel.



## **Projection error via IoU**<sub>part</sub>

calculates the binary IoU of the visible part of the projected area (bird's eye view) of an estimated and a manually annotated homography matrix.



#### Qualitative results on SoccerNet-Calibration dataset [Giancola et al. MMSports'22]



#### Evaluating the homography on *WorldCup2014* dataset [Homayounfar et al. CVPR'17]

#### **Reprojection error**

Superior results compared to reimplemented approaches

- On two benchmark datasets
- Both when using ground truth and custom segmentation

#### **Projection error**

- Similar results compared to state-of-the-art approaches
- Quality of annotated matrices **H** introduces bias [Homayounfar et al. CVPR'17]

#### Limitations

- Local minima due to gradient-based optimization
- Importance of a **good camera parameter initialization**

# References

Chu et al. 'Sports Field Registration via Keypoints-Aware Label Condition', CVPRW'22 • Giancola et al. 'SoccerNet 2022 Challenge Results', MMSports@MM'22 (https://github.com/SoccerNet/sn-calibration)



#### **Ablations studies**

- Homography estimation vs. calibration
- Impact of segment localization
- Multiple camera location initialization
- Self-verification
- Lens distortion correction

| Calibration           | Segmentation  | ACC@5 | ACC@10 | ACC@20 | loU <sub>part</sub><br>(mean) | loU <sub>part</sub><br>(median) |
|-----------------------|---------------|-------|--------|--------|-------------------------------|---------------------------------|
| Н                     |               | 54.1  | 82.9   | 92.4   | 100.0                         | 100.0                           |
| TVCalib               | Ground Truth  | 62.7  | 84.9   | 95.5   | 96.1                          | 97.1                            |
| Chen & Little CVPR'19 | Ground Truth  | 61.2  | 82.4   | 90.6   | 95.2                          | 97.3                            |
| TVCalib               | Predicted     | 38.8  | 69.1   | 89.4   | 95.3                          | 96.6                            |
| Chen & Little CVPR'19 | Chen & Little | 35.8  | 66.3   | 84.4   | 94.6                          | 96.3                            |
| Jiang et al. WACV'20  | Jiang et al.  | 36.9  | 62.9   | 81.5   | 95.2                          | 97.1                            |
| Shi et al. WACV'22    | Shi et al.    |       |        |        | 96.6                          | 97.8                            |
| Chu et al. CVPRW'22   | Chu et al.    |       |        |        | 96.0                          | 97.0                            |

- Homayounfar et al. 'Sports Field Localization via Deep Structured Models', CVPR'17
- Chen & Little 'Sports Camera Calibration via Synthetic Data', CVPRW'19
- Cartas et al. 'A Graph-Based Method for Soccer Action Spotting Using Unsupervised Player Classification', MMSports@MM'22
- Theiner et al. 'Extraction of Positional Player Data from Broadcast Soccer Videos', WACV'22
- Sangüesa et al. 'Using Player's Body-Orientation to Model Pass Feasibility in Soccer', CVPRW'20
- Rematas et al. 'Soccer on Your Tabletop', CVPR'18
- Zhu et al. 'Reconstructiong NBA Players', ECCV'20
- Stein et al. 'Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis', Trans. Vis. Comput. Graph.'18

